Показано с 1 по 3 из 3

Тема: Эволюция автомобильного освещения.

  1. #1
    Администратор Аватар для GolDen
    Регистрация
    02.08.2011
    Адрес
    Украина
    Сообщений
    13,601
    Поблагодарил(а)
    3,229
    Получено благодарностей: 2,414 (сообщений: 1,639).

    Эволюция автомобильного освещения.

    Чем «ксенон» отличается от «галогенок»? И почему светодиоды не отправили на свалку истории лампы накаливания и газоразрядную оптику? И что общего между лампами Philips и зубной пастой? Ответ на эти и другие вопросы вы найдете в нашем материале.


    Как появились автомобильные фары? На первых машинах использовались примитивные фонари с восковыми свечами или керосиновыми горелками внутри, заимствованные от конных экипажей. Естественно, такие «коптилки» должным образом не освещали дорогу, а потому инженерам пришлось подыскивать примитивным фонарям более эффективную замену, коей оказалось ацетиленовое освещение: на долгое время неизменным спутником автомобилистов стала пара бочонков, один — с карбидом кальция, второй — с обычной водой. Перед ночной поездкой «шофэр» (как называли тогда водителей) устанавливал бочонки на автомобиль, открывал краником подачу воды, а последняя, попадая на карбид, способствовала выработке ацетилена — газа, который при горении дает достаточно мощный световой поток. Правда, через несколько часов бочонки приходилось перезаряжать, а фару, состоящую из зеркального отражателя и линзы, чистить от копоти...


    На этих иллюстрациях приведены автомобили с ацетиленовым головным освещением, которое выдают не только большие фары, но и бочонки для карбида, установленные на подножках. А поскольку ацетилен оказался слишком мощным источником света, способным пробивать темноту на сотню метров, в качестве «габаритных огней» на машинах начала века использовались тусклые керосиновые горелки

    Но почему нельзя было использовать лампы накаливания, которые появились даже раньше самого автомобиля? В 1899 году французская фирма Bassee & Michel попыталась объединить автомобильную фару и лампу накаливания, но конструкция получилась неудачной — лампы с угольной нитью на неровных дорогах быстро приходили в негодность, а большой расход энергии требовал громоздких аккумуляторных батарей, поскольку генераторы на машины тогда не ставили. И только повсеместное появление генераторов, а также начало выпуска нового типа лампочек с вольфрамовыми нитями «перевели» автомобильный транспорт на электрическое освещение. Вот только «электросвет» оказался... слишком ярким! Чтобы не слепить встречных водителей, пришлось придумывать дополнительные задвижки и шторки, уменьшать яркость лампочек, затем появилась двухнитевая лампа (с отдельными нитями для ближнего и дальнего света). В 1955 году, наконец, внедрили асимметричное освещение — когда фара со стороны пассажира светит дальше водительской.


    Обратите внимание, как форма головной оптики определяла дизайн автомобилей (для наглядности возьмём разные поколения мерседесовского Е-класса). Долгое время фары оставались исключительно круглыми, на машинах 1960-х удалось внедрить квадратную оптику, расцвет популярности которой пришелся на 1980-е, а современные фары со «свободным отражателем» и вовсе развязали руки дизайнерам

    Сейчас в фарах используются три источника света: лампы галогенные и газоразрядные, а также светодиоды. Про лазеры и прочую экзотику говорить рановато — до серийных автомобилей новомодные разработки дойдут нескоро. Тем более, что отказываться от «нелинзованной» фары, куда можно установить хоть «ксенон», хоть «галоген», хоть светодиоды, инженеры не собираются. Конструкция данного устройства доведена до совершенства: свет от лампы попадает на отражатель из металла, а затем проходит через рассеиватель — наружное стекло, состоящее из множества линз. Причем, когда появился новый пластик, не дающий усадки при формовке деталей, инженеры создали отражатель со «свободной поверхностью», который состоит из множества сегментов (каждый направляет поток света на определенную точку). Это позволило заменить тяжелое стекло легким пластиком и отказаться от рассеивателя.


    Так устроена «нелинзованная» фара (для фары со «свободным» отражателем и традиционной схемы не отличаются): нить ближнего света расположена выше и впереди точки фокуса, причем колпачок внутри лампы «подрезает» поток света, чтобы освещать только верхнюю поверхность отражателя (рис. слева), а вот нить дальнего света и точка фокуса совпадают и поверхность отражателя используется целиком (рис. справа)

    Фара «линзованная» (которую правильно называть светотехникой проекторного типа) устроена другим образом: свет от лампы попадает на отражатель, а затем направляется на специальный экранчик и собирающую линзу, которые формируют пучок света. И хотя сейчас «линзы» можно увидеть на многих машинах, поскольку они известны компактностью и точной организацией светового потока, инженерам-светотехникам поначалу пришлось решать проблему перегрева и избавляться от... слишком резкой светотеневой границы — оказалось, что глаз человека слишком быстро устает от четкой границы между светом и тенью. На «галогенках» проблему решили дифракционными кольцами (проще говоря, рисками на линзе), а на «ксеноне» — установкой автоматического корректора, наличие которого в России и в Европе для газоразрядной светотехники обязательно.


    Схема «линзованной» оптики: слева — фара конца 80-х, справа — современная фара со свободным отражателем, наличие которого выдает экранчик меньшего размера. Этот экран, расположенный во втором фокусе, подправляет световой поток и формирует светотеневую границу, а затем лучи снова фокусируются линзой. «Линзами» сегодня оснащается большинство машин, а «нелинзованные» фары стали прерогативой недорогих авто, вроде «Калины» или «Логана»

    Вот, собственно, мы и добрались до самого главного. Чем принципиально отличаются «ксенон», «галоген» и диоды? Галогенная лампа состоит из герметичной стеклянной колбы, внутри которой размещены электроды и нить накаливания из вольфрама, а также закачана газовая смесь, необходимая, чтобы «ловить» испаряющийся вольфрам и регенерировать нить (именно поэтому «галогенка» компактнее и долговечнее обычной лампочки). Газоразрядная оптика (чаще именуемая «ксеноном») нити накаливания не имеет: внутри такой лампы светится не раскаленная нить, а электрическая дуга, возникающая между электродами, оттого величина светового потока ксеноновой лампы гораздо больше, 3200 против 1500 лм «галогенки»! Вот поэтому европейские эксперты постановили, что таким фарам необходим автоматический корректор и омыватель. И ограничили цветовую температуру лампы.


    Для того, чтобы «ксенон» работал, одной лампы недостаточно. Ещё нужен модуль розжига, который из «бортовых» 12 вольт выдаст короткий импульс на 25 киловольт переменного тока. Чтобы сделать «биксенон», нужно четыре таких модуля, либо применение хитрых систем: на «линзованной» оптике включить «дальний» можно, убирая экранчик при помощи соленоида, а на «нелинзованной» приходится перемещать лампу

    Но если «ксенон» и «галоген» — это лампы, то светодиод — полупроводниковый прибор, который вырабатывает свет при прохождении тока. Полупроводник срабатывает быстрее традиционной лампочки, потребляет меньше энергии, отличается фактически неограниченным сроком службы и минимальными размерами. Но пока диодам поручают только второстепенные задачи (на основе светодиодных технологий делают стоп-сигналы, габаритные и дневные ходовые огни), хотя совсем недавно инженеры и дизайнеры прочили полупроводникам большое будущее. Все надеялись, что крохотный источник света обеспечит свободу компоновки и позволит избавиться от громоздких фар. Однако на примере Audi R8 и Nissan Leaf хорошо видно — существующая диодная оптика по размерам не отличается от газоразрядной.


    Пока ученые бьются над созданием лазерной и волоконной оптики, источниками света остаются «галогенки», «ксенон» и светодиоды. На рис. А изображена двухнитевая галогенная лампа Н4, дающая ближний и дальний свет, на рис. Б — однонитевая лампа Н7 (которых для создания ближнего и дальнего нужно две), а на рис. В и Г схематично показаны ксеноновая газоразрядная лампа и светодиод, соответственно

    Так почему светодиоды не вытеснили «ксенон» и примитивные «галогенки»? Оказалось, что полупроводниковая оптика имеет множество недостатков. Пока даже лучшие светодиоды не способны по светоотдаче догнать «ксенон» и остаются на уровне хороших «галогенок», что требует обязательного применения отражателя. Также диодные фары требуют отдельной системы охлаждения (инженеры даже пробовали охлаждать фары антифризом) и отличаются необычайной дороговизной: одна фара стоит примерно 1300 евро... Естественно, инженеры развивают данное направление, но до массового перехода автомобильного освещения на светодиоды далеко, поэтому ближайшее будущее остается за «ксеноновой» оптикой, которая становится компактнее и совершеннее, по энергопотреблению догоняя диодную.


    В лаборатории Philips мы наглядно увидели, как светят современные фары. На рис. А световой поток от стандартной «галогенки», на рис. Б можно увидеть, как светят лампы Philips X-treme Vision, дающие 100-процентное усиление светового потока, на рис. В «дорогу» освещают газоразрядные ксеноновые лампы, а рис. Г — это свет новомодных светодиодных фар электромобиля Nissan Leaf

    Но и списывать «галогенки» на свалку истории рановато! Как считают инженеры компании Philips, современная галогенная лампа может светить на уровне газоразрядной. Чтобы этого добиться, необходимо заменить тугоплавкое стекло колбы кварцевым, во-вторых, стекло подвергнуть оптической полировке, в-третьих, нанести на колбу колпачок из палладия... И, наконец, применить новую смесь газов, куда входит ксенон, чтобы повысить температуру нити и приблизиться к спектру солнечного свечения. На выходе получается пусть дорогая, но уникальная лампочка: её световой поток на 100% мощнее обычной галогенной лампы, а срок службы — вдвое больше. Причем на лабораторной установке мы наглядно убедились, что «галогенка» Philips X-treme Vision по светосиле действительно догоняет «ксенон».


    Так выглядит одна из многочисленных лабораторий компании Philips, в которых создается автомобильная оптика будущего. На одной стене установлен экран, имитирующий дорогу, на котором нанесены ключевые точки (в них измеряется освещенность), на другой установлены разнообразные фары. Соответственно, инженер имеет возможность оценить как конкретную фару, так и характеристики источника света

    Кроме лекции об автомобильном освещении, на заводе Philips мы увидели и реальное производство, на котором выпускаются лампы. И это бесчеловечно! В том смысле, что присутствие человека при выпуске «галогенок» и «ксенона» минимизировано — кругом трудятся современные роботы, обеспечивающие фактически стопроцентное отсутствие брака. Но, кроме фактически полной автоматизации, удивило и другое: зачем нужен составной цоколь и дополнительная производственная операция, чтобы выровнять нить накаливания относительно цоколя? Оказывается, данный процесс является ключевым, иначе готовая лампочка будет светить «неправильно» — слепить встречных водителей или, напротив, подсвечивать небо. Поэтому взаимное расположение «ниточки» и «основания» проверяется компьютером, а часть продукции осматривают люди.


    Немецкий завод компании Philips, выпускающий галогенные и ксеноновые лампы (диоды делают по другую сторону Атлантики, на территории Силиконовой долины), снаружи выглядит довольно скромно. Увы, показать читателям оборудование, скрытое внутри, мы не можем — на предприятии действует строжайший запрет на фотосъемку... Секретом остается и количество ламп, производимых заводом

    «Ксенон» производят похожим «бесчеловечным» образом: вот робот подхватывает стеклянную трубочку, вот вставил нижний электрод, а дальше начинается такая круговерть, что только успевай следить! Трубочку заполнили составом солей и вставили верхний электрод, закачали охлажденный до −190ºС ксенон и запаяли колбочку, одели металлическую юбочку и обрезали излишки стекла, проверили горелку — готово? Нет, чтобы газоразрядные лампы светили одинаково, их нужно отжечь — включить и несколько часов дожидаться, пока цветовая температура достигнет нужной величины. Вот теперь готово! Осталось только выяснить, какая связь между лампами Philips и зубной пастой. Всё просто: бракованные стеклянные трубочки для колб не выбрасываются на свалку, а перемалываются в абразивный порошок. Из которого затем делают отбеливающие пасты для стоматологических кабинетов.

  2. 1 пользователь сказал cпасибо GolDen за это полезное сообщение:


  3. #2
    Администратор Аватар для GolDen
    Регистрация
    02.08.2011
    Адрес
    Украина
    Сообщений
    13,601
    Поблагодарил(а)
    3,229
    Получено благодарностей: 2,414 (сообщений: 1,639).
    Ночь, пригород Барселоны, журналисты закладывают... кусочки карбида внутрь металлического бочонка. Зачем?! Всё просто: бочонок — часть автомобиля позабытой сегодня марки Reyrol 1909 года выпуска, и таким образом мы зажигаем фары. Зажигаем — в прямом смысле этого слова.


    На этой фотографии отлично видна эволюция автомобильного освещения. Автомобили (нижнее фото слева направо) по типу оптики: ацетиленовые горелки, простые электрические лампы, галогеновые лампы (две машины подряд), галогеновые лампы Philips X-tremeVision, матричные светодиодные фары

    Сначала нужно открыть краник ацетиленового генератора (того самого бочонка), чтобы вода начала капать на карбид кальция. В результате взаимодействия карбида и воды образуется ацетилен, который по трубочкам доходит непосредственно до керамической горелки, упрятанной внутри фары. Стоим, ждём — процесс этот небыстрый. Пора? Открываем стекло фары, чиркаем спичкой — сначала появляется едва видимый огонёк, который вскоре гаснет. Опять ждём и снова подносим спичку. Разгораясь, маленький язычок пламени быстро становится довольно ярким источником света. Поехали!

    Насколько путь, освещаемый ацетиленовой горелкой, светел? Говорят, что удачные образцы, оснащённые параболическими отражателями, могли пробивать тьму метров на триста. Но то ли оптика Reyrol не слишком совершенна, то ли современники приукрашивали действительность, но двигаться на машине начала прошлого столетия по ночным дорогам просто небезопасно. Не видно ни-че-го! А набежит сильный ветер и огонёк внутри фары попросту задувает — вставай, разжигай заново. И каждые четыре часа заправляй генератор карбидом и прочищай горелку от нагара...


    Если ацетиленовые горелки на Reyrol 1909 года (слева сверху) почти не освещают дорогу, то электрические лампы Packard образца 1934 года (справа сверху) способствуют безопасному вождению куда больше. У SEAT 800 1964 года (слева внизу) — уже эффективная асимметричная оптика на основе «галогенок», а фары Daimler DS420 1968 года вообще светят очень недурно, по качеству света напоминая современные

    С электрическим светом, конечно, проще. В 1912 году, когда появились вольфрамовые нити накаливания вместо угольных (последние боялись тряски), ацетиленовые лампы разом уступили место лампам накаливания. На роскошном седане марки Packard 1934 года стоят именно такие, причём — с двумя нитями накаливания: для дальнего и ближнего света отдельно. (К тому времени уже был придуман рассеиватель — покрытое линзами стекло фары, отклоняющее свет лампы). Но водитель снова «подслеповат»! Паккардовский «дальний» гораздо слабее, чем «ближний» любой современной машины.

    И только пересаживаясь на Daimler DS420 родом из конца шестидесятых, начинаешь чувствовать себя уверенно. Слава «галогенкам»! Кстати, такие фары рано отправлять на свалку истории — в будущем галогеновые лампы продолжат ставиться на массовые автомобили, поскольку могут светить на уровне «ксенона». В качестве примера инженеры Philips показали лампы X-tremeVision, которые светят на 130% ярче и излучают на 20% более белый свет (3700 К), почти догоняя «ксенон» (4300 К), а также модель Philips WhiteVision, излучающая на 60% больше света, притом света «ксенонового» (4300 К).


    По прогнозам экспертов, к концу 2030-х примерно половина выпускаемых машин сохранит «галогенки», как простой и дешёвый источник света! Неудивительно, что инженеры продолжают совершенствовать галогеновые лампы, улучшая характеристики нити, увеличивая давление разрядного газа и повышая качество покрытия и кварцевого стекла

    Но самый совершенный автомобильный свет сегодня — это матричные светодиодные фары. И это настоящий шедевр инженерного искусства! За который нужно выложить 112 тысяч рублей — столько стоит опция Multibeam для Mercedes-Benz CLS. За что просят такие деньги? В каждой фаре имеются секции: дневных ходовых огней, статичного ближнего света, активного ближнего света средней дальности, дальнего света, а также бокового освещения. Управляет всем этим хозяйством компьютер, который получает данные от камеры, датчиков освещения и GPS-навигации.

    Такие фары потребляют втрое меньше энергии, нежели ксеноновые, а их цветовая температура выше: 5000 К вместо 4300 К, поэтому свет белее, напоминая естественный дневной (6500 К), отчего глаза гораздо меньше устают. Как такового жёсткого разделения на ближний, дальний и «противотуманный» режимы больше нет, поскольку электроника сама регулирует форму светового пучка. Вот как это работает. С дневными ходовыми огнями всё понятно — их задача обозначать машину днём. Секция статичного ближнего света освещает дорогу прямо перед машиной, выполняя роль «противотуманок»...


    Так устроена светодиодная фара Mercedes-Benz CLS:

    1. Дневные ходовые огни и сигнал поворота. Также данная секция выполняет функцию «приветственного света», который освещает хозяину дорогу от машины и обратно.
    2. Активный ближний свет. Эта секция, состоящая из четырёх светодиодов, может поворачиваться на угол до 12º, а также выполнять роль «среднего света» (между «ближним» и «дальним»).
    3. Активный дальний свет. Каждый из 24 светодиодов может включаться, выключаться, а также менять яркость, притом каждый светодиод имеет 255 стадий яркости.
    4. Статичный ближний свет. Три секции из восьми светодиодов (2+2+4) освещают дорогу прямо перед автомобилем и обочины, выполняя роль противотуманных фар.
    5. Боковой свет. Два светодиода включаются только перед поворотами и боковыми развязками, притом могут включаться секции либо одной, либо обеих фар

    А ближний свет? Он особенно хорош при прохождении поворотов, которые система распознаёт при помощи стереокамеры, сканирующей дорожную разметку, и данных от навигации. Перед виражом подключаются секции бокового освещения, а сам пучок света отклоняется (соответствующая группа диодов поворачивается на угол до 12º), притом незадолго до того момента, как водитель начнёт поворачивать руль. Чтобы заранее подсветить выход из виража, в прямолинейное положение фары возвращаются также заранее. На круговых развязках «умная оптика» вообще старается осветить весь круг.

    Но интереснее всего работает «дальний». Его можно вовсе не выключать за городом! Пучок, формируемый лучами двух дюжин светодиодов каждой фары, постоянно меняет свою форму, чтобы максимально освещать дорогу, но не слепить других водителей: когда впереди появится встречный или попутный автомобиль, система мгновенно приглушит те светодиодные элементы, которые могли бы помешать остальным. Сообразительности системы хватает, чтобы одновременно отслеживать до восьми машин. «Дальнобойность» также впечатляет — светит светодиодный «дальний» аж на 485 метров.




    В повороте светодиодные матричные фары будто «заглядывают» внутрь виража. При этом освещаются также обочина и часть встречной полосы, но попутная машина — «в тени».
    На круговых развязках (внизу слева) работает рефлекторы бокового света обеих фар, чтобы расшить освещаемую зону и видеть не только въезд на развязку, но и выезжаающие слева и «из-за круга» машины.
    Вся дорога ярко освещена (внизу справа), но та область, где движется встречная машина, остаётся тёмной, так как система включает, выключает или меняет яркость отдельных светодиодов


    Кстати, у Audi оптика вдобавок оснащена инфракрасной системой ночного видения, а потому фары умеют подсвечивать пешеходов: если система ночного видения за 250 метров перед машиной заметит человека, фары, не ослепив, поморгают «живому препятствию» и «нарисуют» освещённую дорожку, куда следует отступить. В остальном, «аудюшная» система Audi Matrix LED похожа на мерседесовский Multibeam, хотя матричные фары «Мерседеса» меняют световой пучок плавнее, чем светодиоды Audi, так как для каждого отдельного диода предусмотрено 255 уровней яркости против 64.

    Увы, но лазерную оптику Philips не показал: инженеры пока только работают над этим направлением. Но почему? Ведь именно за лазерами — будущее! Или нет?.. «Автомобильной лазерной оптики не существует», — огорошил публику Матиас Хагедорн, лектор по современным системам освещения. Как так, если лазерные фары получили Audi R8 LMX и BMW i8? Но Хагедорн невозмутимо продолжил: «В существующих конструкциях лучи нескольких лазеров только попадают на фосфорную пластину, люминофор, которая испускает пучок белого света. Поэтому правильно называть такую технологию лазерно-люминофорной!»


    Трудно поверить, но светодиодные фары флагманского S-класса устроены проще, чем оптика модели CLS: фары большого Mercedes-Benz тоже наводят тень на встречную (или попутную) машину, но по другому принципу — при помощи специальной заслонки, которая перемещается, сопровождая приближающийся автомобиль

    Таким образом, лазер является только источником энергии, но не источником света. И если сейчас существует «ближний» и «дальний», то лазерно-люминофорная оптика — это «сверхдальний»: такой свет включается на скорости выше 60 км/ч и светит на 500-600 метров. Впечатляет? Честно говоря, за 15 тысяч евро (по нашей информации, именно столько стоят «лазеры») хотелось бы большего, так как те же полкилометра освещают и матричные светодиодные фары, а новое поколение LED-оптики будет более «дальнобойным» и более функциональным — в секции дальнего света будет не 24, а 84 диода.

    Поэтому выводы таковы. Будущее — за светодиодными фарами. Однако если инженеры научат «лазеры» светить дальше, то именно такие фары станут прерогативой сверхбыстрых суперкаров. Увы, но совершенная матричная LED-оптика из-за дороговизны на некоторое время останется приметой лишь автомобилей премиум-класса. Зато массовые машины получат пускай статичные, но светодиоды, так как Philips (их оптикой оснащён каждый третий автомобиль на планете), уже создала доступные световые решения. Прощай, «ксенон» и «галоген»?



    Audi R8 LMX выпущена тиражом 99 экземпляров. Именно за версию LMX нужно доплатить 35 тысяч евро: за эти деньги владелец получит более мощный двигатель (570 л.с. против 550 л.с.), углепластиковые детали кузова и, разумеется, уникальную лазерную оптику.
    Четыре лазерных диода мощностью 1,6 Вт подсвечивают люминофор, свет от которого, пройдя через систему отражателей, падает на дорогу. Лазерный свет обладает дальностью до 600 м, тогда как светодиодный дальний (обычный, не матричный) высвечивает дорогу на 300 м, а ближний — на 150 м

    Напоследок ответим на популярный вопрос: стоит ли переплачивать за матричные светодиоды? Ночной тест-драйв показал, что активные фары — штука отличная. Особенно для наших дорог, где нужно напряжённо всматриваться вдаль, выискивая колдобины, ночных пешеходов и сломавшиеся грузовики без фонарей и знаков аварийной остановки. Хотя обычные, неактивные, диоды тоже светят прекрасно...

  4. 3 пользователей сказали cпасибо GolDen за это полезное сообщение:


  5. #3
    Подполковник Стрельбы 2012За вклад в развитие клубаЗа хороший отчетАктивный пользовательЗа идею и предложения клуба Аватар для -=Chief=-
    Регистрация
    29.09.2011
    Адрес
    Donetsk
    Сообщений
    3,508
    Поблагодарил(а)
    461
    Получено благодарностей: 823 (сообщений: 445).
    Завтра почитаю.
    Не забыть бы!

Ваши права

  • Вы не можете создавать новые темы
  • Вы не можете отвечать в темах
  • Вы не можете прикреплять вложения
  • Вы не можете редактировать свои сообщения
  •